Parallel (1 + ϵ)-Approximate Multi-Commodity Mincost Flow in Almost Optimal Depth and Work

To appear at FOCS'25

Yonggang Jiang (Max Planck Institute for Informatics)

Collaborators:

Bernhard Haeupler (ETH & INSAIT)

Yaowei Long, Thatchaphol Saranurak (Umich)

Shengzhe Wang (ETH)

Minimum Cost Flow

- Input: a directed graph with edge capacities and costs, two nodes s, t
 - For this talk: capacities and costs are non-negative integers
- Output: Max flow with Min cost.
 - Max flow: maximum (fractional) number of s-t flow path that respects capacity
 - Min cost: minimum summation of cost (length) of all the flow path
- Special cases:
 - Max flow
 - SSSP
 - Reachability
 - ...

Parallel Computing

- PRAM: shared memory parallel model
 - Work: total number of unit operations
 - Depth: longest dependency chain of the algorithm
- Work-efficient: Work = \tilde{O} (best sequential running time)
- Highly parallelizable: Depth= $\tilde{O}(1)$ and work-efficient
 - For this talk: Depth= $n^{o(1)}$ and work-efficient

What problems are highly parallelizable?

- Reachability?
 - Decades of attempts ... stuck at $n^{0.5+o(1)}$ depth [JLS'19]
 - Lower bound of $n^{1/4}$ [BH'23] for shortcut type algorithms
 - Seems far from the answer ...
- SSSP 💢

Max flow

Give up?

Min-cost flow

- Reachability?
 - Decades of attempts ... stuck at $n^{0.5+o(1)}$ depth [JLS'19]
 - Lower bound of $n^{1/4}$ [BH'23] for shortcut type algorithms
 - Seems far from the answer ...

• Undirected Reachability: $\tilde{O}(1)$ depth!

- Undirected $(1 + \epsilon)$ -Approximate SSSP
 - [Cohen, STOC'94] $n^{o(1)}$ depth via hopset ("distance shortcut")
 - [Li, STOC'20] $\tilde{O}(1)$ depth via oblivious routing
- Undirected $(1 + \epsilon)$ -Approximate Max flow
 - [Sherman, FOCS'13] First $\tilde{O}(m)$ work sequential (congestion approximator + MWU)
 - [Agarwal, Khanna, Li, Patil, Wang, White, Zhong, SODA'24] $ilde{O}(1)$ depth following Sherman's approach
 - Sherman's approach does not work for Vertex Capacitary or Min-Cost
- Undirected $(1 + \epsilon)$ -Approximate Min-cost flow (with vertex capacity & cost)
 - [Bernstein, Gutenberg, Saranurak, FOCS'21] $First \ m^{1+o(1)} \ work \ sequential \ (decremental \ SSSP + MWU)$
 - [Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva, FOCS'22] $m^{1+o(1)}$ work (IPM for m iterations)
 - Our result: $m^{1+o(1)}$ work, $n^{o(1)}$ depth via "LC-flow shortcut"
 - * Approximate means (1ϵ) flow with $(1 + \epsilon)$ cost for maximum flow

Overview

- 1. Low-step $(1+\epsilon)$ -Approximate min-cost flow in $m^{1+o(1)}$ work and $n^{o(1)}$ depth [Haeupler, Hershkowitz, Saranurak, STOC'23]
 - There exists an approximate flow and that every flow path has $n^{o(1)}$ edges.
 - Main techniques: flow path LP with $\exp(n^{o(1)})$ constraints + MWU in $n^{o(1)}$ rounds
- 2. Add "LC-flow shortcut" edges H to the graph G so that
 - Every flow in G maps to a low-step flow in $G \cup H$
 - Every flow in $G \cup H$ maps to a flow in G
 - Flow mapping has
 - Cost slack $(1 + \epsilon)$
 - Flow value (congestion) slack $n^{o(1)}$

Our focus

- 3. We get: min-cost flow with $(1+\epsilon)$ -cost approximation and $n^{o(1)}$ -flow approximation
 - Use MWU to boost the flow approximation to $(1-\epsilon)$

LC-Flow shortcut: Plan

- 1. A "distance shortcut" preserving $(1 + \epsilon)$ distance (no congestion) [Cohen, STOC'94]
 - Low diameter decomposition
- 2. A "congestion shortcut" preserving only $n^{o(1)}$ congestion (no cost)
 - Expander decomposition hierarchy
- 3. A "LC-flow shortcut" preserving both $n^{o(1)}$ congestion and $(1 + \epsilon)$ distance
 - Combining the ideas of 1 and 2
 - Length-constraint expander decomposition hierarchy

Distance Shortcut [Cohen, STOC'94]

- LDD: Low-diameter decomposition (with a parameter d):
 - Partition vertex set into clusters with diameter at most d
 - Any path (we care about) of length d crosses at most $\tilde{O}(1)$ clusters
 - To be precise: each edges is crossing clusters with probability $\tilde{O}(\frac{1}{d})$
- A simple distance shortcut with slack $\tilde{O}(1)$
 - For every scale of d: compute LDD with parameter d, add a d-star to each cluster
- It is possible to boosting distance slack to $(1 + \epsilon)$

Congestion Shortcut

- Expander decomposition (with a parameter $\phi = 1/n^{o(1)}$):
 - Partition vertex sets into clusters with expansion at least ϕ (any degree-respecting demand can be routed with congestion $1/\phi$ satisfying)
 - At most $\tilde{O}(\phi \cdot m)$ crossing cluster edges
- Add a star to each cluster (capacity equals to degree): congestion slack $n^{o(1)}$
- For crossing cluster edges: run terminal expander decomposition
 - Repeat $O(\log_{\frac{1}{\phi}} n)$ layers

Combining Distance and Congestion: LC-Flow Shortcut

- How to define a cluster? (Think of combining Low-diameter and Expander)
 - Every degree-respecting demand can be routed by a flow with congestion ϕ and average cost d
- What is the guarantee of decomposition?
 - $\tilde{O}(m\phi)$ edges must cross clusters, and then
 - Each edge becomes crossing with probability $\tilde{O}(\frac{1}{d})$
- Making this intuition to be continuous: "crossing" -> "increasing length"
 - Length-constraint expander decomposition [Haeupler, Raecke, Ghaffari STOC'22]
- Add stars with (1) degree as capacity (2) d as cost -> LC-Flow shortcut

Summary and Open Problems

- Undirected $(1 + \epsilon)$ -Approximate Min-cost flow (with vertex capacity & cost)
 - $m^{1+o(1)}$ work $n^{o(1)}$ depth

Open problems:

- How to improve to $\tilde{O}(m)$ work and $\tilde{O}(1)$ depth? (Even sequential is unknow)
 - Shortcut based approach cannot work, $(1+\epsilon)$ -hopset has lower bound $n^{o(1)}$
 - [Li, STOC'20] circumvent the barrier for SSSP using oblivious routing
- Removing "undirected" or "approximation"?
 - Requires solving reachability (shortcut upper / lower bound)
 - Match the performance of reachability ($\tilde{O}(m)$ work $n^{0.5+o(1)}$ depth)
 - Linear size LC-flow shortcut for directed graph with depth $n^{1-\epsilon}$?
 - Min-cost flow in almost linear work and h depth for h-length bound flow path?